《纳米科学与技术》课程教学大纲

一、课程概况

课程名称	纳米科学与技术	课程号	107412036
课程英文名称	Nanoscience and technology	学时/学分	36/2
课程性质	选修	适用专业	材料物理、功能材料
课程负责人	白所	教学团队	成立
选用教材及 参考书目	教材:		

课程简介:

在现代科技发展中,纳米科技无疑将在 21 世纪极大地影响着人类的生活,影响和带动许多其它学科的发展进程。纳米技术及其基础学科正以前所未有的速度蓬勃发展,纳米技术已经渗透到很多科学学科,并为其他学科的研究提供了新的平台。该课程系统讲解纳米科学与技术的基础知识、相关基本理论,介绍纳米材料与器件的制备、分析和表征技术有和应用。使学生在学完课程之后,能够了解纳米材料相关领域的理论,胜任纳米材料开发设计和研究工作。

课程目标(Course Objectives, CO)										
/m/H H = (CO1)			1.掌握纳米材料的概念、分类及其特点;							
			2.了解纳米材料的物理性能和化学性能;							
711次日	知识目标(CO1)			3.了解纳米材料基本效应;						
			4.了解纳米材料的主要制备方法及其原理、工艺过程和适用范围;							
			5.了解纳米材料在不同领域的应用现状和应用前景以及研究进展							
能力日	能力目标(CO2)			6.掌握纳米材料粒度、成分、结构、形貌的测试和表征方法;						
HE/J =	14M(C	.02)	7.培养学生在交叉学科和创新能力等方面的综合能力。							
素质、情感价值观目标(CO3)			8.通过对课程内容的研讨提高对技术问题的理解能力、交流能力, 自主学习与终身学习意识。							
	☑PM1 讲授法教 学		学时 70%		☑PM2 研讨式学习		学时 3	学时 30%		
教学方式 (Pedagogical Methods,PM)	□P1	□PM3 案例教学		学时 %		□PM4 翻转课堂		学时 %		
	□Р	□PM5 混合式教学		学时 %		□PM6 体验式学习		学时 %		
考核方式 (Evaluation Methods,EM)	考试课	□EM1 课程作义	此	%	□ЕМ	[2 单元测试	%	□EM3 课堂辩论	%	

	必选	□EM4 期中考试	%	□EM5 期末考试	%	□EM6 撰写论文/ 实验报告	%
	考查课必选	☑EM1 课程作业 20% □EM 2 单元测试		%	☑EM3 课堂辩 论	20%	
		□EM4 期末考试	%	☑EM5 撰写论文/ 实验报告	50%		
		□EM10 课堂互动	%	□EM11 实验	%	□EM12 实训	%
	自选	□EM13 实践	%	□EM14 期末考试	%		

二、教学大纲的定位说明

(一)课程教学目标与任务

本课程的目的是通过课堂教学、课堂讨论使学生掌握纳米材料的概念、分类及其特点;了解纳米材料的物理性能和化学性能;了解纳米材料的主要制备方法及其原理、工艺过程和适用范围;掌握纳米材料粒度、成分、结构、形貌的测试和表征方法;了解纳米材料在不同领域的应用现状和应用前景以及研究进展。培养学生在交叉学科和创新能力等方面的综合能力。

(二)课程教学目标与培养目标的关系

毕业要求 课程目标	1.1	3.1	4.1	4.2	4.3	4.4	10.1	12.1
1	1							
2	1							
3	1							
4	1			√				
5		√	1					
6		1		1				
7					1	1	√	
8								1

(三)支撑课程目标的教学内容与方法 教学方法:

- (1)在课堂讲授中,教师全面而又有所侧重地阐述各章节的主要教学内容。
- (2)每一次课后,学生温习自学教科书上的相关内容, 并结合文献检索与资料查询,对所学内容加以拓展和巩固。
- (3) 适当安排讨论课。讨论课有利于提高学生的主体意识和对课堂的参与度,并能加强学生之间以及师生之间的交流互动,从而能够强化教学效果。

教学手段: 多媒体幻灯片放映, 结合黑板板书。

(四)先修课程要求,与先修及后续相关课程之间的逻辑关系和内容衔接

《大学物理》、《材料科学与工程导论》、《固体物理》

(五)检验课程目标达成度的考核方法和评分标准

考核方式或途径	考核要求	考核权重	评分标准		
			全勤	100	
出勤	出勤	10%	缺勤次数≤3	80	
			缺勤次数>3	60	
作业	完成作业	20%	根据学生作业完成情况及质量,视 其对课程知识理解掌握情况分为 5 个等级。		
课堂讨论	查阅资料、资料分析总 结、课堂讨论	20%	根据学生资料准备及汇报、回答问 题情况分为 5 等级。		
期末考核	对课程的整体掌握情况	50%	考核	成绩	

三、课程内容与安排

第一章 绪论(6学时)

学习目标:

- 1.了解自然界中的纳米材料。(一般了解)
- 2.了解纳米材料特点和纳米仿生运用。(一般了解)

3.了解纳米材料的优点。(一般了解)

教学重点:

The Lotus-Flower-Effect: Self-cleaning property through hydrophobic micro-dots.

The Moth-Eye-Effect: The art to be invisible through optical nano-burls.

The Gecko-Foot-Effect: Sticking on the wall through elastic nano-hairs.

The Sand-Skink-Effect: Reduction of friction and wear through nano-thresholds.

The Darkling-Beetle-Effect: Collecting dew through hydrophilic/hydrophobic micro-spots.

The Shark-Scale-Effect: Turbulence reduction through longitudinal micro-grooves.

The Water Strider-Effect: To keep dry through micro-hairs with nano-ridges.

教学方法: 讲授

- 1.自然界中的纳米材料与纳米仿生(4学时)
- 2.纳米线紫外传感器(1学时)
- 3.纳米发电机(1学时)

第二章 纳米材料概论(4学时)

学习目标

- 1.纳米材料的概念和分类。(掌握)
- 2.了解纳米科学与技术发展史(了解)

教学重点: 纳米材料的概念、分类

教学方法: 讲授

- 1.纳米材料的概念和分类(1学时)
- 2.纳米科技简史(2学时)
- 3.纳米科技的发展前景(0.5学时)
- 4.纳米材料的特性与应用(0.5学时)

第三章 纳米材料的基本效应(6学时)

学习目标

掌握纳米材料的七大基本效应 (重点掌握)

教学重点: 久保理论、量子尺寸效应、小尺寸效应、表面效应。

教学难点: 1.量子尺寸效应、5.库仑堵塞与量子隧穿效应

教学方法: 讲授、讨论

- 1.量子尺寸效应(1.5学时)
- 2.小尺寸效应(1学时)
- 3.表面效应(1学时)
- 4.宏观量子隧道效应(1学时)
- 5.库仑堵塞与量子隧穿效应(0.5 学时)
- 6.介电限域效应(0.5 学时)
- 7.量子限域效应(0.5 学时)

第四章 纳米材料的物理化学特性(12学时)

学习目标

- 1.理解纳米材料的物理化学特性与纳米材料基本效应之间的关系(重点掌握)
 - 2.了解纳米材料的塑性、巨磁电阻、超顺磁性(一般了解)
 - 3.了解纳米材料的催化性能(一般了解)

教学重点: 纳米微粒分散物系的光学性质、纳米材料的介电性能、纳米材料的塑性、巨磁电阻、超顺磁性、纳米材料的催化性能。

教学难点:巨磁电阻、超顺磁性

教学方法: 讲授、讨论

1.纳米材料的热学性能(1.5 学时)

- 2.纳米材料的光学性能(1.5 学时)
- 3.纳米材料的电学性能(3学时)
- 4.纳米材料的磁学性能(2学时)
- 5.纳米材料的力学性能(2学时)
- 6.纳米材料的化学特性(2学时)

第五章 纳米材料分析方法 2 学时

学习目标

- 1.了解纳米材料的常用分析方法(了解)
- 2.掌握纳米材料粒度分析(掌握)

教学重点: 纳米材料粒度分析

教学方法: 讲授

- 1.纳米材料分析方法(0.5 学时)
- 2.纳米材料粒度分析(1.5学时)

第六章 纳米材料的制备与加工技术(6学时)

学习目标

- 1.了解 CVD 过程 (一般了解)
- 2.了解静电纺丝原理及工艺特点(了解)
- 3.认识光刻技术、流程和技术特点(重点掌握)

教学重点: CVD 技术、光刻技术

教学难点: 弯曲表面的特殊效应

教学方法: 讲授、讨论

- 1.CVD 过程(2学时)
- 2.水热法 (0.5 学时)
- 3.静电纺丝(1.5 学时)
- 4.光刻技术(2学时)

制定人: 白所

审定人: 王连文

批准人: 贺德衍

日期: 2024.10.10