《材料科学基础I》课程教学大纲

一、课程概况

课程名称	材料科学基础 I	课程号	1412016			
课程英文名称	Fundamentals of Materials Science and Engineering I	学时/学分	72/4			
课程性质	必修	适用专业	材料类			
课程负责人	李建功	教学团队	王连文			
选用教材及 参考书目	William D. Callister, Jr., 材料科学与工程导论,李建功 译,化学工业出版社(待出版)					

课程简介:

本课程是材料学科本科生的一门专业基础课。它的主要任务是使学生对材料的生产、科研、应用以及它的过去、现在和未来有初步了解,以及对材料科学与工程有一个较全面而又概括的了解同时,使学生掌握较完整全面的材料科学基础知识。本课程的覆盖面较宽,要介绍工程材料的结构与性能,生产制备,科研和应用的概况,材料的发展历史,目前状况和发展趋势。各章节除介绍有关材料的基本知识外,尽可能反映该领域的新成果、新发展及其在新技术中的应用。用必要的例子生动地描述出该领域的基本情况、动态和趋势,让学生了解这一领域的基础、现状和前景。课程对材料研究的若干方法也做一些简介。

70、初心相趋为,此于工于辟色 次次的垄щ、死仇相前从。体柱为材料明元的有十万亿也做 空间开。										
课程目标(Course Objectives, CO)										
知识目标(CO1)		熟悉各类工程材料的基本概念,包括结构、性能、生产、应用								
		了解材料的生产过程;								
		了解材料科学研究的前沿								
能力目标(CO2)		能够对材料的结构进行分析、设计								
		能够分析材料的性能与结构的对应关系								
		培养学生对材料科学的兴趣								
素质、情感价	素质、情感价值观目标(CO3)									
教学方式 (Pedagogical Methods,PM)	☑PM1 讲授法教学		54 学时 75%		□PM2 研讨式学习			学时	%	
	☑PM3 案例教学		18 学时 25%		□PM4 翻转课堂			学时	%	
	□Р	M5 混合式教学	学时 %			□PM6 体验式学习			学时 %	
考核方式 (Evaluation Methods,EM)	考试课	☑EM1 课程作	业	30%	□ЕМ	2 单元测试	%	☑EM3	课堂辩论	20%

	必选	□EM4 期中考试	%	☑EM5 期末考试	50%	□EM6 撰写论文/ 实验报告	%
	考査课	□EM1 课程作业	%	□EM 2 单元测试	%	□EM3 课堂辩论	%
	必 选	□EM4 期末考试	%	□EM5 撰写论文/实 验报告	%		
	自选	□EM10 课堂互动	%	□EM11 实验	%	□EM12 实训	%
		□EM13 实践	%	□EM14 期末考试	%		

二、教学大纲的定位说明

(一)课程教学目标与任务

- 1.能够复述什么是材料和材料科学
- 2.能够描述原子之间相互作用力随距离的变化
- 3.能够计算体心立方晶体和面心立方晶体的面密度
- 4.能够复述晶体中的缺陷
- 5.能够分析晶体中的自扩散机制及其随温度的变化
- 6.能够用位错理论分析晶体材料的屈服及强化机制
- 7.能够分析材料失效的原因并在设计过程中进行预防
- 8.能够利用相图对材料的结构进行分析
- 9.能够利用相变理论对材料的结构进行控制
- 10.能够按时上课并完成作业

(二)课程教学目标与毕业要求的关系

课程目标		支撑的毕业要求	支撑强度
知识目标(CO1)	1, 2, 3		
能力目标(CO2)	4、5	1.2	Н
素质、情感价值观目标 (CO3)	6		

(三)支撑课程目标的教学内容与方法

讲授为主,辅以案例教学。

(四)先修课程要求,与先修及后续相关课程之间的逻辑关系和内容衔接

本课程是材料专业的基础课,本课程的学习需要学生最好(但不是必须)具备高等数学、大学物理、大学化学作基础,同时又是材料专业的专业课(如金属材料学、陶瓷材料学、高分子材料、功能材料等)的基础。

(五)检验课程目标达成度的考核方法和评分标准

通过课程作业了解学生课程学习的认真程度以及对课程 学习中易出现的错误并及时进行帮扶,通过期末考试了解学 生对课程知识的掌握程度。课程作业及期末考试各占 50%, 总评成绩为百分制,60 分及格。

三、课程内容与安排

第一章 引言(4学时)

学习目标: 能够复述什么是材料和材料科学

教学重点: 材料、材料科学、材料工程、材料科学与工程的概念与范畴,材料分类

教学难点: 材料科学的概念与范畴与其他学科的区别及 关系

教学方法: 讲授

第二章 原子结构与原子间结合(4学时)

学习目标: 能够描述原子之间相互作用力随距离的变化

教学重点:原子结构,固体中的原子结合,结合力与结合能,主键,次键或范德瓦耳斯键

教学难点:原子之间相互作用力随距离的变化

教学方法: 讲授、案例教学

第三章 晶态固体的结构(12学时)

学习目标: 能够计算体心立方晶体和面心立方晶体的面密度

教学重点: 晶体结构, 晶胞, 晶系, 晶向和晶面, 晶向 指数, 晶面指数, 密排晶体结构

教学难点:晶向指数和晶面指数熟练应用

教学方法: 讲授、案例教学

第四章 固体中的缺陷(4学时)

学习目标: 能够复述晶体中的缺陷

教学重点: 空位, 自间隙原子, 刃位错, 螺位错

教学难点: 固体缺陷与材料行为的关系

教学方法: 讲授、案例教学

第五章 扩散(2学时)

学习目标: 能够分析晶体中的自扩散机制及其随温度的 变化

教学重点:扩散的微观机制,扩散的宏观规律

教学难点: 空位扩散、间隙扩散

教学方法: 讲授、案例教学

第六章 金属力学性能(8学时)

学习目标: 能够用位错理论分析晶体材料的屈服

教学重点: 应力和应变的概念,弹性变形,应力-应变曲线,塑性变形

教学难点: 滑移系

教学方法: 讲授

第七章 位错与强化机制(6学时)

学习目标: 能够用位错理论分析材料强度的提高

教学重点: 金属强化机制, 减小晶粒尺寸强化, 固溶强

化,应变硬化,沉淀硬化

教学难点:金属强化机制

教学方法: 讲授

第八章 失效(6学时)

学习目标: 能够分析材料失效的原因并在设计过程中进行预防

教学重点: 断裂,断裂的基本原理,延性断裂,脆性断裂,疲劳,裂纹的产生与扩展,裂纹扩展速率,蠕变

教学难点: 断裂的基本原理,疲劳的特征,裂纹的产生与扩展

教学方法: 讲授

第九章 相图(8学时)

学习目标: 能够利用相图对材料的结构进行分析

教学重点:相,微结构,相平衡,平衡相图,二元匀晶

系,二元共晶系,共析反应和包晶反应,铁碳相图

教学难点:铁碳相图及钢的微观结构

教学方法: 讲授、案例

第十章 金属中的相变(6学时)

学习目标: 能够利用相变理论对材料的结构进行控制

教学重点: 相变, 固态反应动力学, 铁碳合金的微结构与性能变化, 等温转变图, 连续冷却转变图

教学难点: 等温转变图

教学方法: 讲授、案例

第十一章 金属合金的应用和加工(12学时)

学习目标: 能够利用相变理论对材料的结构进行控制

教学重点: 退火, 淬火, 铸铁分类, 有色合金的特点

教学难点: 金属的加工与应用

教学方法: 讲授

制定人: 王连文

审定人: 王连文

批准人: 贺德衍

日期: 2024.10.10