《氢能技术原理与应用》课程教学大纲

一、课程概况

课程名称	氢能技术原理与应用	课程号	107412031		
课程英文名称	The Principle and Application of Hydrogen Technology	学时/学分	36/2		
课程性质	选修	适用专业	新能源材料与器件专业		
课程负责人	徐英	教学团队	李涛		
选用教材及 参考书目	张辉、毛宗强、衣宝廉等,《氢能利用关键技术系列》,第一版,化学工业出版社,2021 年				

课程简介:氢能是清洁的可持续能源,是世界能源转型发展的重要方向。氢在地球上主要以化合态的形式出现,是宇宙中分布最广泛的物质,它构成了宇宙质量的 75%。氢的制取、储存、运输、应用技术也将成为 21 世纪能源科学备受关注的焦点。本课程系统介绍制氢工艺和技术、氢燃料电池、氢气储运和氢安全,为本科生全面学习了解氢能相关的基本知识提供课程平台。

课程目标(Course Objectives, CO)									
知识目标(CO1)			了解氢能的特点、利用和开发方式,掌握氢能的发展方向						
能力目标(CO2)		了解氢科学中的物理化学、材料学、工程学相关的基本概念和知识、 氢科学中的关键问题和已有的解决途径。							
素质、情感价值观目标(CO3)		为后续专业课学习、科学研究、工程实践奠定坚实的理论基础							
教学方式 (Pedagogical Methods,PM)	☑PM1 讲授法教学		24 学时 67 %		□PM2 研讨式学习		学时 %		
	☑PM3 案例教学		12 学时 33 %		□PM4 翻转课堂		学时 %		
	□PM5 混合式教学		学时 %		□PM6 体验式学习		学时 %		
考核方式 (Evaluation Methods,EM)	考 试 □EM1 课程作 <u>\</u> 课		lk	%	□EM	12 单元测试	%	□EM3 课堂辩论	%
	必选	□EM4 期中考记	式	%	□EM5 期末考试		%	□EM6 撰写论文/ 实验报告	%
	考查课	□EM1 课程作 <u>\</u>	比	%	□EM 2 单元测试		%	☑EM3 课堂辩论	60%
	必选	□EM4 期末考i	式	%	☑EM5 撰写论文/ 实验报告		40%		
	自选	□EM10 课堂互	动	%	□EM11 实验		%	□EM12 实训	%

□EM	M13 实践 %	□EM14 期末考试	%		
-----	----------	------------	---	--	--

二、教学大纲的定位说明

(一)课程教学目标与任务

- 1.了解氢能对于生产生活、能源转型的重要性
- 2.阐述氢能研究的现状
- 3.了解现有制氢工艺和技术的原理、种类、技术特点和发 展。
- 4.了解氢燃料电池的基本概念和原理、关键材料和部件、 测试原理和方法、电池和电堆的组成和特点。
 - 5.了解储氢的方式、原理和技术特点。
 - 6.了解氢安全的原理、策略。
 - 7.能够按时上课并进行课堂互动。

(二)课程教学目标与毕业要求的关系

课程目标		支撑的毕业要求	支撑强度	
知识目标(CO1)	1-5	1	L	
能力目标(CO2)	6	2	L	
素质、情感价值观目标 (CO3)	7	8	L	

(三)支撑课程目标的教学内容与方法

讲授为主,辅以案例教学。

(四)与先修及后续课程之间的逻辑关系和内容衔接 各年级本科生、研究生均可选修

(五)检验课程目标达成度的考核方法和评分标准

通过到课率及课堂辩论了解学生课程学习的认真程度,通过课程论文了解学生对课程知识的掌握程度。课堂辩论及课程论文各占50%,总评成绩为百分制,60分及格。

三、课程内容与安排

第一章 氢能研究现状(6学时)

学习目标:

- 1.了解氢能对于生产生活、能源转型的重要性
- 2.阐述氢能发展和研究的现状

教学重点: 氢能研究现状

教学难点: 氢能的存在形式和利用方式

教学方法: 讲授、案例

第二章 氢科学中的基本原理(6学时)

学习目标:了解氢科学中所涉及的物理化学、材料学、

工程学中的基本概念和原理

教学重点: 所涉各学科中的各种概念和原理

教学难点:不同学科概念的交叉和辨析

教学方法: 讲授、案例

第三章 制氢工艺与技术(8学时)

学习目标:了解各种制氢技术和原理

教学重点: 不同制氢工艺和技术的基本原理和特点

教学难点:不同技术路线间的比较

教学方法: 讲授、案例

第四章 氢燃料电池(8学时)

学习目标: 了解氢燃料电池的原理、工作方式和组成部

件

教学重点:燃料电池的原理及所涉多学科基本原理

教学难点:燃料电池的电化学原理以及构效关系

教学方法: 讲授、案例

第五章 氢气储存与输运(4学时)

学习目标: 了解现有氢气储存与输运技术

教学重点: 氢气储存与输运的原理和技术

教学难点: 各种储氢形式间的转化

教学方法: 讲授、案例

第六章 氢安全(4学时)

学习目标: 了解氢能各个环节中氢安全使用技术

教学重点: 氢安全的概念和实施手段

教学难点: 氢安全与氢脆

教学方法: 讲授、案例

制定人: 徐英、李涛

审定人: 王连文

批准人: 贺德衍

日期: 2024.10.10