《X射线衍射实验》课程教学大纲

一、课程概况

课程名称	X 射线衍射实验	课程号	207412013		
课程英文名称	X-ray diffraction Experiment 学时/学分		72/2		
课程性质	专业选修课	适用专业	材料物理、材料化学、功能 材料、新能源材料与器件		
课程负责人	寇昕莉	教学团队	徐远丽, 刘书海		
选用教材及 参考书目	《X 射线衍射理论与实践》,黄继武, 李周,化学工业出版社 《X 射线衍射实验方法》,李树棠,冶金工业出版社 《X 射线衍射测试分析基础教程》, 徐勇,范小红,化学工业出版社				

课程简介:

本课程主要针对材料物理、材料化学、功能材料和新能源材料与器件专业的本科生开设。通过实验让学生掌握 X 射线衍射实验的基本方法和实验技能,锻炼和提高学生实践动手的能力。使学生能够正确地运用 X 射线衍射实验技术开展有关的科学研究,为今后从事材料科学的研究工作打下必要的基础。

		课	程目标(Cour	se Obj	ectives, CO)			
知识目	标((CO1)		熟	悉 X 射线衍射	†的基本	本实验方法	
能力目标(CO2)			学会 X 射线衍射的常规实验技术 学会 X 射线衍射实验数据的基本处理方法					
素质、情感价	值观	目标(CO3)						
教学方式 (Pedagogical Methods,PM)	■PM1 讲授法教学		学时 10%		□PM2 研讨式学 习		学时 %	
	□PM3 案例教学		学时 %		□PM4 翻转课堂		学时 %	
	□P:	M5 混合式教学	学时 %		■PM6 体验式学习		学时 90%	
考核方式 (Evaluation Methods,EM)	考试课	□EM1 课程作业	<u>'</u> %	□EM	12 单元测试	15%	□EM3 课堂辩论	%
		□EM4 期中考试	%	□EN	15 期末考试	50%	□EM6 撰写论文/ 实验报告	30%

考查课必选	□EM1 课程作业	%	□EM 2 单元测试	%	□EM3 课堂辩论	%
	□EM4 期末考试	%	■EM5 撰写论文/ 实验报告	30%		
自选	□EM10 课堂互动	%	■EM11 实验	70 %	□EM12 实训	%
	□EM13 实践	%	□EM14 期末考试	%		

二、教学大纲的定位说明

(一)课程教学目标与任务

教学目标:

- (1) 熟悉 X 射线衍射实验的基本方法;
- (2) 学会分析 X 射线衍射实验数据;
- (3) 能够运用 X 射线衍射实验技术研究材料的结构。

教学任务:

- (1) 讲授实验仪器的构造、工作原理和操作方法;
- (2) 讲授 X 射线衍射实验的基本方法;
- (3) 讲授 X 射线衍射实验数据的分析方法。

(二)课程教学目标与培养目标的关系

本课程的教学目标强有力地支撑了本专业的培养目标。 使学生熟悉 X 射线衍射的基本测试技术,能够运用 X 射线衍射实验技术开展有关的科学研究,为培养在材料相关领域从事研发或管理工作的研究型、引领型人才起到了强有力的支撑作用。本课程的教学目标可对应毕业要求 1.1(掌握材料的制备、结构表征、性能测试等专业知识)、毕业要求 4.2(能够根据对象特征,选择研究路线,设计实验方案)、毕业要求 4.3(能够根据实验方案构建实验系统,有效开展实验,正确采集实验数据)和毕业要求 4.4(能够对实验结果进行分析和解释,并通过信息综合得到合理的结论)。本课程教学目标对毕业要求 1(工程知识)和毕业要求 4(研究)的支撑强度为 H。

(三)支撑课程目标的教学内容与方法

教学内容: 主要讲授 X 射线衍射实验仪器的构造、工作

原理和操作方法; X 射线衍射实验的基本方法和实验数据的分析方法; 学会如何利用 X 射线衍射技术来解决结构分析中的实际问题。

教学方法: 对实验的基本原理和方法进行讲授。引导学生领会实验的研究思路,使学生能正确地选定实验条件和掌握测试技术,能独立地动手做实验并掌握数据处理的方法。通过实验报告撰写、数据分析等环节,培养学生的观察、分析、解决问题和沟通表达等能力。

(四)先修课程要求,与先修及后续相关课程之间的逻辑关系和内容衔接

先修课程要求: 普通物理

学本课程之前需具备一定的普通物理知识,以便更好地 理解 X 射线衍射的实验的基本原理和方法。

(五)检验课程目标达成度的考核方法和评分标准

结合实验操作和实验报告进行考核。实验操作占 70%, 实验报告占 30%, 总评成绩为百分制, 60 分及格。

三、课程内容与安排

实验一、衍射仪的构造与操作(8学时)

学习目标: 熟悉 X 射线衍射仪的构造和各部分的功能; 学会仪器的操作方法。

教学重点: 衍射仪的构造和工作原理, 衍射仪的操作方法, 测量参数的选择

教学难点: 测量参数的选择

教学方法: 讲授、实验

实验二、定性相分析(8学时)

学习目标: 学会 X 射线衍射定性相分析的实验方法

教学重点: X 射线衍射定性相分析的原理和实验方法

教学难点:实验数据的处理

教学方法: 讲授、实验

实验三、定量相分析(16学时)

学习目标: 学会 X 射线衍射定量相分析的实验方法

教学重点: X 射线衍射定量相分析的原理和实验方法

教学难点:实验数据的处理

教学方法: 讲授、实验

实验四、点阵常数精确测量(16学时)

学习目标: 学会用 X 射线衍射的方法精确测定点阵常数

教学重点: 点阵常数精确测定的实验方法及实验数据处理方法

教学难点:测量参数的选择及实验数据的处理

教学方法: 讲授、实验

实验五、宏观内应力的测定(12学时)

学习目标: 学会用 X 射线衍射的方法测定宏观内应力

教学重点:宏观内应力测定的实验方法及实验数据处理方法

教学难点: 宏观内应力测定的实验方法

教学方法: 讲授、实验

实验六、晶粒尺寸和晶格畸变的测定(12学时)

学习目标: 学会用 X 射线衍射的方法测定晶粒尺寸和晶格畸变

教学重点:测定晶粒细化和晶格畸变的实验方法,谱线 宽化效应的分离方法

教学难点: 谱线宽化效应的分离方法

教学方法: 讲授、实验

制定人: 寇昕莉

审定人: 史蓉蓉

批准人: 贺德衍

日期: 2024.10.10